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Abstract Volatility indices are becoming increasingly popular as a measure of market

uncertainty and as a new asset class for developing derivative instruments. Although jumps

are widely considered as a salient feature of volatility, their implications for pricing vol-

atility options and futures are not yet fully understood. This paper provides evidence

indicating that the time series behaviour of the VIX index is well approximated by a mean

reverting logarithmic diffusion with jumps. This process is capable of capturing stylized

facts of VIX dynamics such as fast mean-reversion at higher levels, level effects of vol-

atility and large upward movements during times of market stress. Based on the empirical

results, we provide closed-form valuation models for European options written on the spot

and forward VIX, respectively.
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1 Introduction

Volatility is undoubtedly one of the most important variables in finance, appearing in a

wide spectrum of theories and applications in asset pricing, portfolio theory, risk man-

agement, derivatives, corporate finance, investment evaluation and econometrics. A fas-

cinating recent development has been the treatment of volatility as a distinct asset which

can be packaged in an index and traded using futures and options (hereinafter collectively

referred to as ‘‘volatility derivatives’’).1 Volatility derivatives provide new ways to trade

and hedge volatility risk and are considered by some to ‘‘have the potential to be one of the
most important new financial innovations’’ (Grünbichler and Longstaff 1996).

The first volatility index, originally named VIX (currently termed VXO), was introduced

in 1993 by the Chicago Board Options Exchange (CBOE). The VXO index is constructed

according to the methodology proposed by Whaley (1993) and it represents the implied

volatility of a synthetic at-the-money option on the S&P 100 with constant 30 calendar days

to expiry. The CBOE adopted a new methodology in 2003 to calculate VIX in a model-free

manner as a weighted sum of out-of-the-money S&P 500 call and put option prices at two

nearby maturities across all available strikes. Carr and Wu (2006) showed that the new VIX

squared approximates the 30-day conditional risk-neutral expectation of the return variance.

Hence, VIX squared approximates the 30-day variance swap rate. Several other volatility

indices similar to VIX have also been developed. These include the VXN and the VXD in the

CBOE, which are the equivalent to VIX volatility indices of the NASDAQ and Dow Jones

Industrial Average, respectively. The DAX-30 volatility index (VDAX-NEW) in Germany,

the CAC-40 volatility index (VCAC) in France and the Dow Jones EURO STOXX 50

volatility index (VSTOXX) in the Eurex. In March 2004, the CBOE introduced volatility

futures written on the VIX and while in February 2006 it also launched European volatility

options on the same index. Futures on the VXD were introduced in April 2005 and European

options are to follow soon. In September 2005, Eurex launched futures on the VDAX-NEW

and VSTOXX indices, respectively.

Volatility derivatives were first suggested by Brenner and Galai (1989, 1993) as a

response to the growing need for instruments to hedge volatility risk. It has been argued that

volatility derivatives make markets more complete since they expand the realm of invest-

ment opportunities and allow direct hedging of volatility (vega) risk, without affecting the

delta exposure to the underlying asset price risk. Volatility derivatives have a wide range of

other important potential applications. Traditionally, volatility could be traded via at-the-

money straddles, whose value increases with volatility; but straddles have the disadvantage

of creating both market and volatility exposure. The market effect can be removed by

rolling forward; however this is done at uncertain future market levels and trading costs. In

contrast, volatility derivatives allow pure exposure to volatility changes. Certain classes of

investors, such as convertible bond arbitrage funds and structured product issuers, can use

these derivatives to insure against their structural exposure to volatility. Volatility

1 Other types of derivatives used for trading/hedging volatility include variance and volatility swaps, which
are traded over-the-counter (see Demeterfi et al. 1999; Chriss and Morokoff 1999, and Carr and Lee 2005,
for details on the pricing and hedging aspects of variance/volatility swaps).
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derivatives can be used to partially hedge against shifts in transaction costs and tracking

error penalties, both of which increase during periods of high uncertainty. Investment

managers that are long in equities are usually short in volatility because of the leverage

effect. Asset correlations have been found to increase significantly during periods of market

stress, making portfolio diversification very difficult. Given that volatility tends to increase

when equity markets decline, a long position in a volatility derivative could be used as a

hedging vehicle in a high correlation environment. An increase in volatility has a significant

impact on the equity risk premium that shareholders require above the risk-free rate. Thus,

firms could employ volatility derivatives to protect themselves from unexpected subsequent

changes in the marginal cost of new issues. Although not yet available, bond and foreign

exchange volatility indices and derivatives, could allow firms to hedge their volatility

exposure in these markets. All these applications appear appealing; however, future

research must establish empirically the effectiveness and advantages or disadvantages of

volatility derivatives in comparison to conventional alternatives.

A number of studies have examined the forecasting power of volatility indices (see,

among others, Fleming et al. 1995; Whaley 2000; Blair et al. 2001; Corrado and Miller

2005; Simon 2003; Giot 2005). There has also been a growing interest in modelling the

time series dynamics of the autonomous implied volatility process. For example, Bakshi

et al. (2006) estimated various diffusion processes with a non-linear drift and a diffusion

component on the square of VXO. Wagner and Szimayer (2004) estimated a mean

reverting jump diffusion process using VIX and VDAX. They found evidence of signifi-

cant positive jumps in implied volatilities. However, they adopted the rather restrictive

assumption that the jump size is constant. Dotsis et al. (2007) examined the ability of

alternative popular continuous-time diffusion and jump diffusion processes to capture the

dynamics of eight major European and US volatility indices. They found that the best fit to

the data was offered by jump diffusion models with random upward and downward jumps.

Finally, Sepp (2008) tried to model the VIX consistently with the dynamics of the variance

of the S&P 500 and he found that jumps in variance are important.

Grünbichler and Longstaff (1996) developed the first model for the valuation of futures

and European-style options written on volatility, respectively. The authors assumed that

the underlying volatility followed a mean reverting square root process, similar to that used

earlier by Heston (1993). Detemple and Osakwe (2000) provided analytical formulae for

pricing both American and European-style volatility options assuming a mean-reverting

process in the logarithms of volatility. On the basis of a discrete-time GARCH process,

Heston and Nandi (2000a) derived analytical solutions for pricing European options

written on variance. More recently, Daouk and Guo (2004), priced volatility options based

on a Switching Regime Asymmetric GARCH process.

Motivated by the growing importance of volatility derivatives, this paper examines two

main issues. First, it extends the literature on volatility indices by evaluating the perfor-

mance of various diffusion and jump diffusion processes in approximating the empirical

behaviour of the VIX. Specifically, we show that the best fit to the data is offered by the

simple mean reverting logarithmic diffusion process of Detemple and Osakwe (2000)

which is augmented by jumps. The diffusion part allows rapid increases followed by fast

mean reversion, a salient feature of VIX, while the jump component accounts for the

possibility of large upward movements during periods of market stress. Second, on the

basis of the empirically favoured jump diffusion process we develop closed form

expressions for pricing futures and European options written on VIX. Initially, we provide

pricing formulae for futures and options written on spot VIX and then we extend the

analysis to the case where the option is written on forward VIX. The option pricing model
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on spot VIX nests as a special case the model by Detemple and Osakwe (2000). We assess

the potential implications of incorrectly omitting jumps from the diffusion process by

showing that prices and hedge ratios may differ substantially. When the option is written

on the forward VIX, as is the case with the options currently traded in the CBOE, it is

shown that the pricing model is similar to that proposed by Kou (2002).

The remainder of the paper is structured as follows: The next section analyses the time

series behaviour of the daily VIX over a period of 15 years. Section 3 presents the vola-

tility processes considered in the empirical analysis. Section 4 discusses the empirical

results with respect to the competing processes. Section 5, develops valuation formulae for

VIX futures and options and discusses some of their key properties. The final section

concludes the paper and offers some ideas for future research.

2 Empirical properties of the VIX

We use daily closing values of the VIX from 1/2/1990 to 9/13/2005, a total of 3,957

observations.2 Figure 1 depicts the evolution of VIX in levels, first differences (DVIX),

logarithmic levels (LOGVIX) and logarithmic differences (DLOGVIX), respectively. The

plots suggest a volatile and mean-reverting behaviour for both VIX and LOGVIX with a

number of jumps, while DVIX and DLOGVIX display violent swings.

The summary statistics of the series, shown in Table 1, largely confirm this behaviour.

The VIX ranges from 9 to 45%, with an average of 19.6%. The higher moments suggest a

leptokurtotic distribution with heavy tails and skeweness to the right for the VIX, DVIX

Fig. 1 The VIX in levels, first differences (DVIX), logarithmic levels (LOGVIX) and logarithmic
differences (DLOGVIX), respectively

2 Data were downloaded from the website of the CBOE. For details on the construction methodology of the
VIX see Carr and Wu (2006).
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and DLOGVIX. The Jarque–Bera test rejects the normality assumption at a high level of

confidence for all series. Autocorrelations die out slowly in levels, something consistent

with a highly persistent process. DVIX (DLOGVIX) appears weakly anti-persistent (per-

sistent) with small negative (positive) short-term autocorrelations. The highly significant

autocorrelations of the squared series suggest that heteroskedasticity is present in all series.

We proceed in examining the unconditional distribution of the data. As depicted in

Fig. 2, the shape of the histogram for the VIX, and to a less extent of the LOGVIX,

corresponds to a highly skewed distribution such as the chi-squared or the lognormal. Both

differenced series appear to have leptokurtic distributions. A more detailed breakdown of

the unconditional distributions is presented in Table 2. Given that the standard deviation of

DVIX is around 0.0122 with a mean very close to zero, we can observe 22 distinct four-

standard deviation events: 9 downward and 13 upward. Under a normal distribution,

variations exceeding four-standard deviations should occur with a probability of under

0.005% or once in about every 80 years. In the case of VIX, the probability of these

extreme variations occurring is over 0.5%, 100 times higher than that expected under the

normal distribution, i.e., such an event occurs, on average, once every 178 days. These

findings are expected given the fat-tails in the distribution of DVIX and the apparent jumps

in the underlying process. It should be noted that almost all of the extreme negative

changes in DVIX occur after large positive changes. This means that the jumps could be

characterised also as positive spikes.3 The DLOGVIX is somewhat closer to the normal

distribution since only 14 (12 positive and 2 negative), 4-standard deviation events can be

observed.

Table 1 Descriptive statistics of daily VIX in levels, first differences (DVIX), logarithmic levels (LOG-
VIX) and logarithmic differences (DLOGVIX), respectively, from 1/2/1990 to 9/13/2005

VIX DVIX LOGVIX DLOGVIX

Mean 0.1957 -0.0000 -1.6808 0.0000

Median 0.1856 -0.0004 -1.6841 -0.0022

Maximum 0.4574 0.0992 -0.7822 0.4169

Minimum 0.0931 -0.0780 -2.3740 -0.2750

Std. Dev. 0.0639 0.0122 0.3123 0.0556

Skewness 0.9382 0.5647 0.2510 0.6006

Kurtosis 3.7411 9.1172 2.3677 6.6136

Jarque–Bera 671.14** 6,378.52** 107.46** 2,390.3**

q(1) 0.981** -0.041** 0.983** 0.070**

q(2) 0.964** -0.088** 0.969** 0.070**

q(3) 0.950** -0.057** 0.957** 0.059**

q2(1) 0.975** 0.201** 0.983** 0.125**

q2(2) 0.950** 0.189** 0.969** 0.070**

q2(3) 0.932** 0.204** 0.958** 0.064**

q(q) and q2(q) are autocorrelation and autocorrelation of the squared series coefficients at lag q, respectively

** Statistical significance at the 1% (5%) level

3 Jumps are defined here as upward or downward discontinuous shifts in the underlying process which occur
infrequently. As positive (negative) spikes we characterize upward (downward) discontinuous variations of
the underlying which are immediately followed by a downward (upward) discontinuous reversal.
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Fig. 2 Histograms of VIX in levels, first differences (DVIX), logarithmic levels (LOGVIX) and logarithmic
differences (DLOGVIX), respectively

Table 2 Conditional tabulation of VIX versus DVIX and LOGVIX versus DLOGVIX

VIX Total

[0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5)

DVIX [-0.1, -0.05) 0 1 1 6 0 8

[-0.05, 0) 2 1,244 661 114 8 2,029

[0, 0.05) 3 1,052 703 130 19 1,908

[0.05, 0.1) 0 0 4 6 2 12

Total 5 2,298 1,369 256 29 3,956

LOGVIX Total

[-2.5, -2) [-2, -1.5) [-1.5, -1) [-1, -0.5)

DLOGVIX [-0.4, -0.2) 0 3 0 0 3

[-0.2, 0) 411 1,084 516 23 2,034

[0, 0.2) 354 949 563 37 1,903

[0.2, 0.4) 0 7 4 3 14

[0.4, 0.6) 0 1 1 0 2

Total 765 2,044 1,084 63 3,956
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3 Diffusion and jump diffusion processes for the VIX

3.1 Diffusion processes

One of the simplest continuous time processes of volatility is the Mean Reverting Gaussian

Process (often called Ornstein–Uhlenbeck process):

dVt ¼ kðh� VtÞdt þ rdZt ð1Þ

It was initially proposed in order to capture the evident mean reversion in volatility (e.g.,

Stein and Stein 1991; Scott 1987; Brenner et al. 2006). Under this process, the volatility

changes have a normal distribution, an assumption that is clearly rejected from our

empirical analysis of the VIX. Moreover, this process has the significant disadvantage of

allowing the possibility of negative volatility values. Two of the most popular alternatives

are the Mean Reverting Square Root Process (SR) and the Mean Reverting Logarithmic

Process (LR), given by Eqs. (2) and (3), respectively4:

dVt ¼ kðh� VtÞdt þ r
ffiffiffiffiffi

Vt

p
dZt ð2Þ

d ln Vtð Þ ¼ k h� ln Vtð Þð Þdt þ r dZt ð3Þ

where Vt is the value of VIX at time t, Zt is a standard Wiener process, k is the speed of

mean reversion, h is the long run mean, and r is the diffusion coefficient. Both equations

are defined under the actual probability measure P and can be obtained as a limit of

particular ARCH-type processes. In particular, Heston and Nandi (2000b) have shown that

SR can be obtained as a limit of a particular GARCH-type process, similar to the

NGARCH and VGARCH models of Engle and Ng (1993). Detemple and Osakwe (2000)

show that the EGARCH model of Nelson (1990) converges to a Gaussian process that is

mean reverting in the log and thus matches the specification of the LR process. These

processes should be able to capture two of the basic empirical characteristics of the VIX:

mean reversion and heteroskedasticity. Furthermore, volatility follows a non-central Chi-

squared distribution under the SR and a log-normal distribution under the LR, respectively

(see Cox et al. 1985 and Detemple and Osakwe 2000), which is consistent with our

analysis of the VIX unconditional distribution. We do not consider the Constant Elasticity

of Variance (CEV) process (see Chan et al. 1992) since option pricing becomes infeasible

due to the intractability of the characteristic function (see Duffie et al. 2000).

3.2 Jump-diffusion processes

Since the preliminary analysis in Sect. 2 suggests the possibility of positive spikes in the

VIX, we also consider three basic types of mean reverting processes augmented with

upward jumps:

Square-Root Process with Jumps (SRJ) dVt ¼ k h� Vtð Þdt þ r
ffiffiffiffiffi

Vt

p
dZt þ y dqt ð4Þ

4 See, among others, Heston (1993), Grünbichler and Longstaff (1996), and Jones (2003) for the case of
square root (SR) process, and Detemple and Osakwe (2000) for the case of mean reverting logarithmic (LR)
process.
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Square-Root Process with proportional Jumps (SRPJ)

dVt ¼ k h� Vtð Þdt þ r
ffiffiffiffiffi

Vt

p
dZt þ ydq�

t

ð5Þ

Logarithmic Process with Jumps (LRJ) d ln Vtð Þ ¼ k h� ln Vtð Þð Þdt þ rdZt þ ydqt ð6Þ

where Zt is a standard Brownian motion, dqt and dq�
t

are compound Poisson processes, and

y is the jump size. In the SRJ and LRJ processes, dqt has a constant arrival parameter k, i.e.

the probability of a jump is independent of the current level of Vt. In the SRPJ process the

arrival parameter of dq�
t

is proportional to Vt, Pr{dqt=1} = kVtdt, i.e., the probability of a

jump is proportional to the current level of Vt. dZ is assumed to be independent from both

dq and dq�
t
. We further assume that the jump size is drawn from exponential distribution

with density:

f ðyÞ ¼ ge�gy1 y� 0f g ð7Þ

where 1/g is the mean of the upward jump. The exponential distribution allows us to

capture upward jumps in VIX and to derive the characteristic function in closed form (see

the ‘‘Appendix 1’’ for the derivation of the characteristic functions). The one-sided

exponential distribution adopted in (7) is a version of the double exponential distribution

used by Kou (2002) in modelling the dynamics of stock and index prices. Equations (4), (5)

and (6) are all defined under the actual probability measure P. After an application of Ito’s

lemma in Eq. (6), the process of Vt can be written as:

dVt ¼ Vt k ~h� lnðVtÞ
� �

dt þ r dZt þ ðey � 1Þdq
h i

ð8Þ

where ~h ¼ ðkhþ 0:5r2Þ=k. Inspection of Eq. (8) shows that LRJ, in contrast to the other

two processes, has a proportional structure, i.e., the mean reversion, the diffusion coeffi-

cient and the jump size, all depend on the current level of Vt. The proportional structure of

this model has three important implications. First, the model can account for a level effect

of VIX, i.e., the condition whereby when VIX increases then its diffusion coefficient

increases proportionally. Note that the diffusion part of Eq. (8) depends on Vt so that some

of the large values of Vt can be captured by the diffusion part instead of the jump part. In

order to examine the empirical relevance of the level effect, we depict in Fig. 3 |DVIX|

against VIX (Panel A), and |DLOGVIX| against LOGVIX (Panel B), respectively. To

further facilitate interpretation we fitted an OLS regression line to each pair of variables.

The graph suggests that a level effect exists mainly in the first case, i.e., there is a positive

relationship between the magnitude of the absolute VIX changes and the VIX levels. The

graph indicates that in the second case, the relationship between the absolute logarithmic

changes and levels is much weaker. The latter implies that the logarithmic transformation

corrects some of the heteroskedasticity in the data, which can be expected since the LRJ

process expressed in logarithms is homoskedastic. In contrast, as it can be easily shown by

Ito’s lemma, the square root type processes continue to imply heteroskedasticity under

logarithmic transformations (see also Christoffersen et al. 2006). Second, since mean

reversion depends on the level of Vt, i.e., the larger the Vt, the larger the effect of the mean

reversion is. The LRJ is able to produce ‘‘spikes’’, rather than jumps, which is consistent

with our preliminary descriptive analysis of the VIX in Sect. 2. Third, the LRJ process

allows for the size of jumps to depend on the level of Vt and is thus capable of generating

large upward movements, again a phenomenon that is consistent with the behaviour of the

VIX during times of market stress. Finally, since we have only weak indications of abrupt

downward movements, we do not include negative jumps. It must be noted that the log
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type processes are able to partially capture this behaviour through their fast mean

reversion.

4 Estimation results

Table 3 shows the Maximum Likelihood (ML) estimation results using the VIX sample

under study (see ‘‘Appendix 2’’ for details on the estimation methodology). For each

process we report: the annualized parameter estimates, the asymptotic t-statistics in

brackets, the log-likelihood (LL) values, the Akaike Information Criterion (AIC) and the

Bayes Information Criterion (BIC). A further comparison of the models under consider-

ation can be made using the Vuong (1989) closeness likelihood-ratio-based test, the results

of which are contained in Table 4. It should be noted that the LL can be employed only for
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Fig. 3 PANEL A: Absolute daily VIX changes (|DVIX|) against the daily VIX level. PANEL B: Absolute
daily logarithmic VIX changes (|DLOGVIX|) against the daily logarithmic VIX level (LOGVIX)
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comparisons between nested models, i.e., between LR and LRJ, and, between SR, SRJ and

SRPJ, respectively.

According to the two information criteria, the best fit is provided by the LRJ, followed

by the LR, SRPJ, SRJ and SR. Moreover, the Vuong test suggests that the performance of

the LRJ is significantly better than that of the competing non-nested models SRPJ, SRJ and

SR, respectively. The null hypothesis of equal model performance is also rejected with

high significance for the LR in all cases except when compared against the SRPJ. In line

with the previous analysis, this ranking implies that the VIX is characterised by: (a) fast

mean reversion at high levels, (b) level effects, i.e., as VIX increases its volatility increases

proportionally, and, (c) jumps that are proportional to the level of VIX.

Amongst the square-root type processes, the SRPJ process displays the highest log-

likelihood value. Since SRPJ, SRJ and SR are nested, the likelihood ratio test can be

Table 3 Parameter estimates of diffusion and jump diffusion processes over full sample (1/2/1990 to 9/13/
2005)

Parameter SR SRJ SRPJ LR LRJ

k 4.5496 7.3800 10.5004 3.9598 4.4887

(5.97) (9.51) (11.13) (5.48) (6.60)

h 0.1945 0.1505 0.1379 -1.6853 -2.1326

(19.95) (21.75) (24.04) (-29.84) (-19.49)

r 0.4048 0.3502 0.3294 0.9611 0.7504

(88.07) (61.32) (51.33) (79.67) (50.31)

k – 19.4080 263.8877 – 41.9585

(4.50) (9.13) (3.10)

1/g – 0.0170 0.0125 – 0.068

(8.22) (4.56) (6.74)

LL 12,263.12 12,422.37 12,459.24 12,485 12,627

AIC -24,520 -24,835 -24,908 -24,964 -25,244

BIC -24,501 -24,803 -24,877 -24,929 -25,229

Numbers in brackets denote t-statistics

The table also gives the Log-Likelihood value (LL), the Akaike Information Criterion (AIC) and the Bayes
Information Criterion (BIC)

Table 4 Vuong likelihood-ratio-based test statistics for model selection

LR LRJ

SR 9.67 7.29

SRJ 2.94 7.08

SRPJ 0.90 6.56

The test can be used to evaluate the performance of a model in a given column (LR, LRJ) against that of a
model in a given row (SR, SRJ, SRPJ). According to the null hypothesis, the two models under consid-
eration are as close to the true model against the alternative that one model is closer. Under the null, the test
statistic is distributed as a standard normal variate. If the test statistic exceeds the critical value at the chosen
significance level, then the null hypothesis can be rejected in favour of the model in a given column. For
a = 5% the critical value is 1.96
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employed to compare the relative goodness-of-fit.5 We find that the likelihood of the SRJ is

significantly higher than that of the SR with the relevant likelihood ratio test statistic being

318.5 and the 5% critical value v2ðdf ¼ 2Þ ¼ 5:99. Allowing the probability of jumps to be

proportional to the level of VIX, produces a further statistically significant improvement

(likelihood ratio = 73.74). The information criteria also suggest that the addition of jumps

in proportion to the level of VIX improves fitting. Another point worth emphasizing is that

the introduction of the jump component raises significantly the speed of the mean reversion

parameter for both the SRJ and SRPJ. This is caused by the fact that jumps do not have a

persistent effect and hence the speed of mean reversion increases ‘‘artificially’’ so as to pull

back the process to its long run mean.

Now we turn our attention to the logarithmic processes. The estimation results show that

the square-root type processes display lower log likelihood values relative to the LR

process. The better fit of the LR process is also verified by almost all the information

criteria. This result should not come as a surprise since, as mentioned previously, the LR

process is capable of generating large increases in Vt at high levels, followed by rapid mean

reversion. Essentially, changes that appear as jumps can also be generated by suitable

diffusion components.6

The inclusion of jumps in the LR process enhances statistical goodness-of-fit even

further. Once the drift and the diffusion components are correctly specified, the inclusion

of a jump component helps to capture additional skewness. The r drops from 0.96 to 0.75,

which implies that jumps account for a substantial component of volatility, as one would

expect intuitively. The estimate of the Poisson arrival rate implies 40 jumps per year with

jump amplitude of approximately 7%. In contrast to the SRJ and SRPJ, the speed of mean

reversion in the LRJ increases only slightly. This is an advantage, since the drift of the

process is capable of generating rapid mean reversion, without inducing unrealistically

high levels of k due to the presence of the jump component.

In order to check the stability of the parameters, we divided the sample into two equal

parts and we re-estimated the processes. The results for the first and second subsamples are

reported in Table 5.7 For all processes, we can draw the following general conclusions.

First, the ranking of the processes remains the same in both subsamples with LRJ

continuing to dominate all other models. Second, the diffusion coefficient (r) displays a

stable behaviour in both subsamples when compared to the full sample. Third, the mean

reversion parameter is higher in both subsamples. However, it is known in the literature

that the mean reversion parameter is biased upwards in finite samples and accurate

5 The likelihood ratio test statistic for comparing the nested models is LR ¼ �2� LLR � LLUð Þ� v2ðdf Þ,
where df is the number of parameter restrictions and LLR; LLU are the log-likelihoods of the restricted and
unrestricted model, respectively. The 5% level critical values are: v2ðdf Þ ¼ 3:84 ðdf ¼ 1Þ; 5:99ðdf ¼ 2Þ;½
7:82 ðdf ¼ 3Þ�‘. In order to be able to compare the directly the performance of the LRJ and LR processes

with that of the SR, SRJ and SRPJ we apply the following change of variable: LLR ¼
PT

t¼1 logðVtþsÞ þ
max

H

PT
t¼1 log½f VtþsjVt;Hð Þ� where xtþs 	 log Vtþs

Vt

� �

and g xtþsjVt;Hð Þ; f VtþsjVt;Hð Þ are the conditional

probability density functions of the log-returns and levels of volatility, respectively, and =R ¼ max
H

PT
t¼1 log½g xtþsjVt;Hð Þ�.

6 This result implies that the key difference is whether the arithmetic Brownian motion or the Geometric
Brownian motion is a better description of the volatility process. To this end, we have also estimated the
Ornstein–Uhlenbeck process and it was found to be misspecified. These results are not reported in the paper
but are available from the authors upon request. Dotsis et al. (2007) find a similar result. According to the
authors, implied volatility follows a Geometric Brownian Process with jumps.
7 Since the results remain the same, and due to space limitations, we have not include the tables with the
Vuong statistic for each subsample. However the tables are available from the authors upon request.
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estimation requires large data sets (e.g., Phillips and Yu 2005). Fourth, the long run mean

estimate is lower in the first subsample when compared to the second subsample and the

full sample, respectively. By visual inspection of the VIX time series, it appears that indeed

the index is characterised by two different regimes: a low volatility regime until the mid

90s followed by a high volatility regime thereafter. Fifth, the estimation in the subsamples

reveals some changes in the parameters of the Poisson arrival rates. Yet, this phenomenon

may not be due to structural changes because the parameters governing the jump com-

ponent are known to be rather ‘‘noisy’’ and large samples may be required for disentan-

gling accurately the diffusion from jumps.

5 Pricing of volatility derivatives

Before we proceed to the derivation of the pricing formulae, we have to formally define the

underlying asset of these contracts. Recall that VIX is the risk neutral expected volatility

from t until the future date T = t ? 30. However, the underlying asset of the volatility

futures and options traded in CBOE is the forward VIX, which is defined as the risk neutral

expected volatility between dates T and T1 = T ? 30. Forward VIX is similar to the

concept of a forward interest rate and can be extracted from the term structure of implied

volatilities.8 In the remainder of this section we derive analytical formulae for pricing

option and futures contracts on volatility indices when spot VIX follows the empirically

favoured Mean Reverting Logarithmic Process with Jumps (LRJ). First, we derive pricing

formulas for futures and options written on spot VIX. Then we extend the analysis to the

case where the underlying of the option is forward VIX.

5.1 Futures on spot VIX

Denote Ft the price of a futures contract at time t with maturity T. The VIX futures is given

by

Ft ¼ EQ
t ðVTÞ ð9Þ

where Q is the risk neutral probability measure and VT is the forward VIX. Since VIX is

not a tradable asset, the fair value of VIX futures cannot be derived by the cost-of-carry

relationship.

We derive the fair value of VIX futures and options on the basis of general equilibrium.

Cox et al. (1981) show that the futures price of any asset is the expectation, under the risk-

neutral measure, of the asset’s value on the expiration date. Hence, before proceeding to

futures valuation, we must rewrite Eq. (6) under the risk neutral probability measure Q.

By analogy to Heston’s (1993) volatility risk premium specification, we assume that the

volatility risk premium is proportional to the logarithm of the current volatility level, i.e.,

ft = f ln Vt (see also Christoffersen et al. 2006). As it is common in the literature (e.g., Pan

2002), we choose this volatility risk premium specification in order to preserve the affine

structure of the process under the risk neutral probability measure. We also assume that

‘‘volatility of volatility’’ and ‘‘jump’’ risk, respectively, are not priced and that there is no

model risk, i.e., the assumed dynamic is the true one. The volatility process under the risk

neutral probability measure Q is then given by:

8 The CBOE site provides details on the calculation of forward VIX.
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d ln Vtð Þ ¼ k þ fð Þ kh
k þ f

� ln Vtð Þ
� �

dt þ rd ~Zt þ y dqt ð10Þ

or, equivalently,

d ln Vtð Þ ¼ k� h� � ln Vtð Þð Þ þ rd ~Zt þ y dq ð11Þ

where k� ¼ k þ f, h� ¼ kh
kþf and ~Zt is a standard Brownian motion under the risk neutral

probability measure Q.

As the conditional density function is not known in closed form, the characteristic

function of VT can be used to derive the expectation of EQ
t ðVTÞ. This is done by evaluating

the characteristic function at s = -i (see ‘‘Appendix 1 for the derivation of the charac-

teristic function of the LRJ.):

EQ
t

VTð Þ ¼ Exp

�

e�k� T�tð Þ lnðVtÞ þ h� 1� e�k� T�tð Þ
� �

þ
1� e�2k� T�tð Þ� 	

4k�
r2

þ k
k�

ln
g� e�k� T�tð Þ

g� 1

� �


ð12Þ

Equation (12) consists of four terms: the first, the second, and the third term correspond to the

diffusion part of the LRJ, respectively, while the fourth term corresponds to the jump part.

The futures pricing formula (12) has the following limiting properties:

lim
T�tð Þ!0

EQ
t

VTð Þ ¼ Vt; ð13Þ

lim
T�tð Þ!þ1

EQ
t

VTð Þ ¼ Exp h� þ r2

4k�
þ k

k�
ln

g
g� 1

� �� �

; ð14Þ

lim
Vt!0

EQ
t

VTð Þ ¼ 0: ð15Þ

Equation (13) shows the standard convergence property of the futures price to the spot

price at maturity. Equation (14) shows that as the time-to-maturity increases, the futures

price tends to the constant long-run volatility mean Exp h� þ r2

4k� þ k
k� ln g

g�1

� �� �

. The latter

means that as time-to-maturity increases, futures prices become less sensitive to current

volatility changes and fail to capture the stochastic evolution of the VIX. Finally, Eq. (15)

shows that as volatility tends to zero, futures prices also converge to zero.

5.2 Volatility options on spot VIX

In this section we develop a pricing formula when the volatility option is written on spot

VIX. The discussion focuses on the additional impact that is due to the jump component

since the properties of volatility options under diffusion processes are already well

understood (see Grünbichler and Longstaff 1996; Detemple and Osakwe 2000). In order to

obtain the valuation formula for a European volatility call, we follow the approach of

Bakshi and Madan (2000) (page 219, Eqs. 22, 23 and 24). The price CðVt; T � t; KÞof the

call option with strike price K and time to maturity T - t is given by:

CðVt; T � t; KÞ ¼ e�r T�tð Þ Ve�k� T�tð Þ

t Wðt; T � tÞP1ðt; T � tÞ � KP2ðt; T � tÞ
h i

ð16Þ

where r is the risk-free interest rate. The probabilities P1 and P2 are determined by
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Pjðt; T � tÞ ¼ 1

2
þ 1

p

Z

1

0

Re
e�isðln KÞ � wjðt; T � t; sÞ

is

" #

ds; j ¼ 1; 2 ð17Þ

where Wðt; T � tÞ ¼ Exp h� 1� e�k� T�tð Þ� 	

þ 1�e�2k� T�tð Þð Þ
4k� � r2 þ k

k� � ln g�e�k� T�tð Þ

g�1

� �

� �

;

w2ðt; T � t; sÞ ¼ wðt;T�t;sÞ
wðt;T�t;0Þ, w2ðt; T � t; sÞ ¼ wðt;T�t;sÞ

wðt;T�t;0Þ,

wðt; T � t; sÞ ¼ e�r T�tð Þ/ðln Vtð Þ; T � t; sÞ

where /ðlnVt; T � t; sÞ is the characteristic function of ln Vtð Þ given in ‘‘Appendix 1’’. The

call pricing formula has the following limiting properties:

lim
T�t!0

CðVt; T � t; KÞ ¼ max Vt � K; 0ð Þ; ð18Þ

lim
T�t!þ1

CðVt; T � t; KÞ ¼ 0; ð19Þ

lim
Vt!0

CðVt; T � t; KÞ ¼ 0: ð20Þ

Equation (18) shows the standard convergence property of the option price to the option’s

payoff at maturity. Equation (19) implies that for very long maturities, the volatility call

option is going to be worthless, as in the models of Grünbichler and Longstaff (1996) and

Detemple and Osakwe (2000). Finally, Eq. (20) suggests (We see no economic reason to

investigate the case lim
Vt!1

CðVt; T � t; KÞ: The assumption that volatility tends to infinity

makes no economic sense, as it implies that volatility can drift to arbitrarily high levels in

finite time. This is the same as assuming a priori that the stock market breaks down in some

catastrophic fashion within a short time span.) that as Vt tends to zero, the volatility option

price converges also to zero. Although under the model of Detemple and Osakwe (2000) a

similar result is obtained, the model of Grünbichler and Longstaff (1996) predicts a non-

zero value since the later assumes that Vt follows a SR. Similar to Detemple and Osakwe

(2000), our model has an absorbing barrier at zero due to the multiplicative structure of the

logarithmic process.

Using the estimated parameters from the previous section, Fig. 4 shows the value of a

volatility call option as a function of Vt for three different levels of moneyness. This is a

purely theoretical exercise since the parameters correspond to the real distribution and not

to the risk-neutral one. We consider the diffusion model of Detemple and Osakwe (2000)

along with our jump-diffusion specification. We can see that for short (long) maturities the

logarithmic diffusion model underprices (overprices) the volatility call in comparison to

the logarithmic jump-diffusion model. This is because the jump part affects mainly the

value of short-term volatility calls, whilst the diffusion part affects mainly the value of

long-term volatility calls.10

Figures 5 and 6 depict the delta (D) of the diffusion and jump-diffusion models as a

function of maturity and Vt, respectively. The formula for the delta is the following11:

10 Das and Sundaram (1999) and Pan (2002) provide similar results in the case of index options, where
jumps improve the pricing mainly of short-term options. The pricing of intermediate and long maturity
options is mainly improved by the assumption that the volatility of returns is stochastic.
11 The derivation of D is straightforward and requires taking the partial derivative of C(Vt,T - t,K), with
respect to Vt (see also Proposition 2 in Detemple and Osakwe 2000). The diffusion model’s D can be derived
by setting k=0.
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Fig. 4 Value of the volatility call option as a function of time-to-maturity estimated for three different
moneyness levels: 20% in-the-money, at-the-money and 20% out-of-the-money. The dotted line corresponds
to the case where there are no jumps in the volatility process (i.e., model of Detemple and Osakwe, 2000)
using the estimated parameters k, h, and r from Table 3, fifth column. The solid line corresponds to the case
where there are upwards jumps in the volatility process using the estimated parameters k, h, r, g, k from
Table 3, sixth column. We assume that r = 5% and Vt =15%
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Fig. 5 Delta of the volatility call option as a function of time-to-maturity estimated for three different
moneyness levels: 20% in-the-money, at-the-money and 20% out-of–the-money. The dotted line
corresponds to the case where there are no jumps in the volatility process (i.e., model of Detemple and
Osakwe, 2000) using the estimated parameters k, h, and r from Table 3, fifth column. The solid line
corresponds to the case where there are upwards jumps in the volatility process using the estimated
parameters k, h, r, g, k from Table 3, sixth column. We assume that r = 5% and Vt =15%
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Fig. 6 Delta of the volatility call option as a function of volatility, estimated for three different maturities:
short (5 days), intermediate (20 days) and long (40 days). The dotted line corresponds to the case where
there are no jumps in the volatility process (i.e., model of Detemple and Osakwe, 2000) using the estimated
parameters k, h, and r from Table 3, fifth column. The solid line corresponds to the case where there are
upwards jumps in the volatility process using the estimated parameters k, h, r, g, k from Table 3, sixth
column. We assume that r = 5% and X =15%
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D Vt; T � t; Kð Þ ¼ oC Vt; T � t; Kð Þ
oVt

¼ e� rþk�ð Þ T�tð ÞVe�k� T�tð Þ�1

t Wðt; T � tÞP1ðt; T � tÞ ð21Þ

We can easily observe that delta is always positive. Interestingly, the delta of the diffusion

model is significantly higher in all cases, indicating that the diffusion model is more

sensitive to VIX changes than the jump-diffusion model. This result may be attributed to

the fact that the conditional variance of the diffusion model is larger than that of the jump-

diffusion model.12

As Figs. 5 and 6 show, short maturity deep in-the-money calls have the highest delta
(almost equal to 1), while long maturity deep out-of-the-money calls have the lowest delta
(almost equal to 0). It can also be observed that as time-to-maturity increases, or, as calls

move from in-the-money to out-of the-money, the value of the delta decreases and flattens

out. This means that as time to maturity increases, or, as moneyness decreases, the vola-

tility call option loses its hedging effectiveness. Another interesting implication of the

mean-reverting nature of VIX is that the delta of a call option written on spot VIX, in

contrast to ordinary options, is not a monotonic increasing function of the underlying. As
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V
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Fig. 7 Theta of the volatility call option as a function of volatility, estimated for four different maturities: 5,
20, 40 and 80 days. The dotted line corresponds to the case where there are no jumps in the volatility process
(i.e., model of Detemple and Osakwe, 2000) using the estimated parameters k, h, and r from Table 3, fifth
column. The solid line corresponds to the case where there are upwards jumps in the volatility process using
the estimated parameters k, h, r, g, k from Table 3, sixth column. We assume that r = 5% and X =15%

12 This can be verified by replacing the estimated parameters to the conditional variance of the LRJ process,

which is given by: 1�e�2k T�tð Þ

k
k
g2 þ r2

2

� �

. However, we should note that this is not a general result and holds

only for the estimated set of parameters.
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the underlying increases, delta initially increases as well and then, for high levels of the

underlying, it decreases. Decreasing delta means that the incremental potential of the call

option becomes smaller and smaller as the underlying increases, or, in other words, for

high levels of VIX, volatility options become more insensitive to the changes of VIX.

Given the leverage effect, the hedging effectiveness of volatility options is actually

diminishing at the time it is most needed.

Figure 7 shows the theta of the diffusion and jump-diffusion model as a function of Vt,

for four different maturities. The sign of the theta of the volatility calls is inconclusive. In

particular, for out-of-the-money options theta is close to zero, for at-the-money options

theta is positive and as Vt grows larger theta becomes negative. These results are similar to

the results of both Grunbichler and Longstaff (1996), and Detemple and Osakwe (2000).

The sign of theta relies on the time-to-maturity, as well as on the moneyness level of the

volatility call. As Grunbichler and Longstaff (1996) state ‘‘… the notion of moneyness is

subtly different in the case of volatility options. The moneyness of the volatility call is not

only the difference between Vt and K, but also of the difference between the long run mean

of Vt and K…’’

5.3 Volatility options on forward VIX

As mentioned, the volatility options traded in CBOE are written on forward VIX. Carr and

Wu (2006) use no-arbitrage arguments to derive upper and lower bounds on VIX futures.

They also showed that Eq. (9) can be written as Ft ¼ EQ
t ðVTÞ ¼ EQ

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EQ
T RVT ;T1

� 	

q

, where

EQ
t RVT ;T1

� 	

is the risk neutral expectation of realized variance between T and T1. From the

concavity of the square root and Jensen’s inequality, the upper and lower bounds of VIX

futures are given by:

EQ
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RVT ;T1

� 	

q


Ft 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EQ
t RVT ;T1

� 	

q

ð22Þ

Hence, the lower bound is a forward volatility swap, which can be approximated by a

forward starting option. These bounds are model-free and do not depend on any particular

specification of spot or forward VIX.

Zhu and Zhang (2007) and Lin (2007) start from the specification of instantaneous

variance and then derive pricing formulae for VIX futures written on forward VIX.

However, in our case, because we start from a specification of spot VIX, it is not feasible to

derive an exact pricing formula for VIX futures. In order to be able to use the information

from spot VIX dynamics for option pricing purposes, we make the assumption that an

unbiased expectation hypothesis holds, i.e. that the forward VIX is the expectation of

future spot VIX, Et VTð Þ ¼ Vforward
t ¼ Ft. Though this assumption may be questionable or

may not be perfectly accurate, it greatly facilitates the analysis because it allows us to

derive simple closed form solutions for VIX options written on forward VIX. Specifically,

if we apply Ito’s lemma in Eq. (12), and set k = 0, the stochastic process of forward VIX

under the risk neutral measure is given by:

d ln Ftð Þ ¼ �1

2
r2

Fdt þ rFdZt; ð23Þ

where rF ¼ re�k� T�tð Þ. Equation (23) shows that, in the absence of jumps, forward VIX is

lognormally distributed. Note that the volatility risk premium still appears in the process.

The volatility of the futures is scaled down by a factor e�k� T�tð Þ relative to the volatility of
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spot VIX. Hence, forward VIX is less volatile compared to spot VIX and this may well be

one of the reasons that CBOE chose to write the options on forward VIX. Since forward

VIX is lognormally distributed, we can use Black’s (1976) formula to price a volatility call

option with maturity T and strike price K:

Ct ¼ e�rðT�tÞ FtN d1ð Þ � KN d2ð Þ½ � ð24Þ

where d1 ¼ lnðFtÞ=Kþ1=2r2
FðT�tÞ

rF

ffiffiffiffiffiffi

T�t
p and d2 ¼ d1 � rFðT � tÞ. A similar formula has been

obtained by Carr and Wu (2006). However, in their analysis they made the somewhat

arbitrary assumption that forward VIX is log-normally distributed. In this paper, the log-

normality of the VIX futures is derived from the dynamics of spot VIX. Note that under the

square-root type process the derivation of the option pricing formula in a closed or semi-

closed form is not feasible (see, Grünbichler and Longstaff 1996). When the spot VIX

follows the LRJ, then by applying Ito’s lemma for jump diffusions in Eq. (12) we can

derive the dynamics of forward VIX:

d ln Ftð Þ ¼ ðak �
1

2
r2

FÞdt þ rFdZt þ yFydqt ð25Þ

where ak ¼ � k
gek� T�tð Þ�1

, rF ¼ re�k� T�tð Þ, yF ¼ e�k� T�tð Þy. Note that now both volatility and

the jump size are scaled down by e�k� T�tð Þ. The option can still be easily priced, using the

semi-closed formulae of Kou (2002).13

5.4 Basis risk

As mentioned previously, futures and options written on the VIX were introduced as more

effective volatility hedging instruments than stock option positions, e.g., straddles, but-

terfly spreads. However, strictly speaking, VIX derivatives can be used only for hedging

the volatility of positions with respect to the underlying index, i.e., the S&P500. To the

extent that the VIX is a good proxy for overall market risk, VIX derivatives can also be

used to hedge against shifts in market volatility for positions on other broad based equity

portfolios. In the case of volatility hedging for individual stocks, a basis risk problem could

arise if the individual stock volatility does not move in tandem with the S&P 500. Apart

from the basis risk arising from the cross-hedge, since we have assumed that VIX is best

described by a logarithmic jump diffusion process, the hedge may also be exposed to basis

risk from the jump component of the market if S&P 500 and the individual stock do not

‘‘jump’’ together.

Another cause for basis risks arises from the fact that the VIX is not a traded asset.

Hence, in the absence of arbitrage, as a self-correcting mechanism, the futures price may

not be tied to the movements of VIX, possibly resulting in a substantial basis risk for the

hedger. The arbitrage bounds of Carr and Wu (2006) hold under the assumption that one

can actively trade a basket of options on SPX and exotic OTC derivatives, such as

forward-start at-the-money forward call options. In conclusion, a comprehensive treat-

ment of the issues involved in hedging volatility risk of individual stocks is both

interesting and important. However, this is beyond the scope of this paper and is left for

future research.

13 The actual importance of jumps in VIX option pricing can only be verified by studying the distributional
shape of forward VIX implied by the VIX options. This is a good strand for future research, when enough
VIX options data will be available.

A jump diffusion model 265

123



www.manaraa.com

6 Conclusions

Motivated by the growing literature on volatility derivatives and their recent introduction

in major exchanges, this paper examines the empirical relevance and potential impact of

volatility jumps in volatility derivative pricing and hedging.

We estimate, via maximum likelihood, various continuous time processes using daily

closing prices on the VIX volatility index over a period of 15 years. The results suggest that

a logarithmic mean reverting diffusion process provides the best fit compared to square root

diffusion and the jump diffusion processes, respectively. Moreover, performance is further

enhanced when a jump component is added to the logarithmic mean reverting process. On

the basis of the estimation results, we develop closed form models for pricing futures and

options on spot VIX. The proposed volatility derivative pricing models nest, as a special

case, those proposed by Detemple and Osakwe (2000) and appear to have comparable

properties. The pricing model without jumps in volatility undervalues (overvalues) short

(long) maturity options, on average, by 10% (6%). Moreover, it is more sensitive to changes

in the underlying. Indicatively, the delta hedging parameter for an at-the-money volatility

call with intermediate time-to-maturity (15–25 days), which is most likely to be used as

hedging instrument, is 8% larger. Finally, we show that when the option is written on the

forward VIX, the pricing model with jumps is similar to that proposed by Kou (2002).

The findings in this paper do not necessarily support criticism against the specific

structural form assumed by existing volatility future and option pricing models. Rather,

they attempt to demonstrate that pricing derivatives on a volatility index should carefully

account for salient features of the data since the results obtained are particularly sensitive

to the specification used to approximate the underlying dynamics. Testing against actual

market prices will provide more definitive evidence on the merit of alternative pricing

models. In the case of futures, this is possible since some data do exist for futures on

volatility indices (e.g., see Dotsis et al. 2007). However, since market traded volatility

options prices are not in abundance, we cannot fully test the empirical relevance of

alternative option pricing models.

We believe that much more research is needed on the practical usefulness of volatility

derivatives, especially for corporate finance. Although some ideas have been proposed in

the literature and discussed in this paper, it is not yet clear how financial managers can use

these instruments and what the actual benefits they may expect are. This is not a trivial

problem, since the implications of volatility for a firm are widespread and complex. For

example, a short futures position on the VIX index buys insurance against changes in the

volatility of the US equity market. A US firm assuming this position, would be affected

directly and indirectly in a number of ways with respect to factors including: firm value,

cost of equity, cost of debt, optimal finance mix, employee stock option value, value and

effectiveness of existing hedges, value of investments, and investment hurdle rates.

Appendix 1: Derivation of the characteristic functions for the jump-diffusion
processes

Duffie et al. (2000) prove that, under technical regularity conditions, the characteristic

function for affine diffusion/jump diffusion processes, such as the SRJ and SRPJ, has the

following exponential affine form14:

14 See Duffie et al. page 1,351, Eqs. 2.4, 2.5, 2.6.
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/ðVt; T � t; sÞ ¼ exp AðT � t; sÞ þ BðT � t; sÞVtð Þ ð26Þ

Thus, for the case of the SRJ, AðT � t; sÞ and BðT � t; sÞ are given by15:

AðT � t; sÞ ¼ a T � t; sð Þ þ z T � t; sð Þ ð27Þ

aðT � t; sÞ ¼ �2kh
r2
� ln k � 1

2
ir2s 1� e�k T�tð Þ

� �

� ��

k

� �

ð28Þ

zðT � t; sÞ ¼ 2kq
2k � gr2

� ln k � 1

2
ir2sþ is

r2

2
� k

g

� �

e�k T�tð Þ
� ��

k � isk

g

� �� �

ð29Þ

and,

BðT � t; sÞ ¼ ksie�k T�tð Þ

k � 1
2
ir2s 1� e�k T�tð Þð Þ

ð30Þ

The characteristic function of the LRJ expressed in logarithms is given by:

/ðlnVt; T � t; sÞ ¼ exp AðT � t; sÞ þ BðT � t; sÞ lnVtð Þð Þ ð31Þ

where

AðT � t; sÞ ¼ ishð1� e�k T�tð ÞÞ � s2r2 1� e�2k T�tð Þ

4j

� �

þ k
k
� ln

g� ise�k T�tð Þ

g� is

� �

ð32Þ

BðT � t; sÞ ¼ ise�k T�tð Þ ð33Þ
Finally, in the case of the SRPJ the coefficients AðT � t; sÞ and BðT � t; sÞ cannot be

solved in closed form and are estimated numerically. So, the conditional characteristic

function /ðVt; T � t; sÞ ¼ EðeisVT Vtj Þ of the SRPJ must satisfy the following Kolmogorov

backward differential equation:

o/
oVt
þ kðh� VtÞ þ

1

2

o2/
oV2

t

Vtr
2 � o/

os
þ kVtE FðVt þ yÞ � FðVtÞ½ � ¼ 0 ð34Þ

subject to the boundary condition

FðVt; T � t ¼ 0; sÞ ¼ eisVt ð35Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

. Differentiating the characteristic function given by Eq. (26) yields:

/V ¼BF

/VV ¼B2F

/T�t ¼F AT�t þ VBT�tð Þ
ð36Þ

where the subscripts denote the corresponding partial derivatives. Substituting Eq. (36) into

Eq. (34) and rearranging yields:

Vt �kB� BT�t þ
1

2
r2B2 þ kE eyB � 1

� 


� �

þ khB� AT�tð Þ ¼ 0 ð37Þ

Also, E eyB � 1½ � ¼
Rþ1

0
ge�gyeyBdy� 1 ¼ g

g�B
� 1, and since Vt 6¼ 0, the expressions in

15 This characteristic function has also been used for estimating purposes by Bakshi and Cao (2006).
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the parentheses in Eq. (37) must equal zero. Therefore, we obtain the following ordinary

differential equations (ODEs)

�kB� BT�t þ
1

2
r2B2 þ k

g
g� B

� 1

� �

¼ 0 ð38Þ

khB� AT�t ¼ 0 ð39Þ

Although the ODEs cannot be solved in a closed form, numerical solutions are possible

subject to the boundary conditions AðT � t ¼ 0; sÞ ¼ 0, and BðT � t ¼ 0; sÞ ¼ is.

Appendix 2: Maximum-likelihood estimation

Maximum Likelihood estimation requires the conditional (transition) density function

f ½Vðt þ sÞ VðtÞj ;H� (s[ 0) of the process Vt, where s denotes the sampling frequency of

observations and H is the set of parameters to be estimated. For a sample VðtÞf gT
t¼1, the

log-likelihood function that is maximized is given by: LL ¼ max
H

PT�s
t¼1 log f Vðt þ sÞð Þð

VðtÞ;Hj Þ.
In the case of the SR and LR processes, the conditional density is known in closed form

(see Dotsis et al. 2007 and Detemple and Osakwe 2000, respectively). The conditional

density of the jump diffusion processes is derived from the characteristic function as

described below (see also Singleton 2001). Assume that we stand at time t, and s denotes

the sampling frequency of observations. Then, the Fourier inversion of the characteristic

function /ðVðtÞ; T � t; sÞ provides the required conditional density function f ½VðTÞ VðtÞj �:

f ½VðTÞ VðtÞj � ¼ 1

p

Z 1

0

Re½e�isVðTÞ/ðVðtÞ; T � t; sÞ�ds ð40Þ

where Re denotes the real part of complex numbers. For a sample VðtÞf gT
t¼1, the condi-

tional log-likelihood function to be maximized is given by:

LL ¼ max
Hf g

X

T

t¼1

log
1

p

Z 1

0

Re½e�isVðtþsÞ/ðVðtÞ; T � t; sÞ�ds

� �

ð41Þ

where H = {j, h, r, k, g} is the set of parameters to be estimated.16 The standard errors of

the ML estimators are retrieved from the inverse Hessian evaluated at the obtained

estimates.
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